스킵네비게이션

본문 바로가기 주메뉴 메인메뉴 국립장애인도서관홈페이지 바로가기

닫기

보존용자료이용 안내

닫기

책표지

검색히스토리

닫기

검색히스토리

* 보유한도 건수는 10건입니다.
검색히스토리 목록
자료구분 검색질의어 검색건수
     

상세검색

상세검색 닫기
자료구분 선택
단행자료
연속자료
멀티미디어자료
장애인자료
웹정보자료
선택된 자료구분
  • 자료구분 선택
도서 상세 검색
도서 상세 검색
분류기호 참조
청구기호 검색
한국대학명
코드명
대학명 참조
한국정부기관명
코드명
정부기관명 참조
도서 상세 검색
발행년도 년 부터
소장기관 검색
판종유형/판종
내용형식
KDC 주제
주제명을 이용한 검색

주제명을 통해 자료를 검색할 수 있습니다.

1. 주제를 입력하세요

주제명찾기
주제어 찾기

이용안내

검색방식 안내. 전방일치: 입력하신 키워드로 시작하는 주제어, 후방일치:입력하신 키워드로 끝나는 주제어, 부분일치:입력하신 키워드 포함하는 주제어

  • ① 검색방식
    • 전방일치- 입력하신 키워드로 시작하는 주제어
    • 후방일치- 입력하신 키워드로 끝나는 주제어
    • 부분일치- 입력하신 키워드 포함하는 주제어
  • ② 주제 입력란에 검색어를 입력하시고 [주제어 찾기]버튼을 클릭합니다.

2. 주제어를 선택하세요

목록

3. 주제어를 모아 검색할 수 있습니다.

선택된 주제명

[검색결과: 0건] 주제명을 선택하세요

도서

Chemical looping partial oxidation : gasification, reforming, and chemical syntheses

표제/저자사항
Chemical looping partial oxidation : gasification, reforming, and chemical syntheses / Liang-Shih Fan
Fan, Liang-Shih   
발행사항
Cambridge, United Kingdom : Cambridge University Press, 2017
형태사항
xxvii, 444 pages, 24 unnumbered pages of plates : illustrations ; 26 cm
총서사항
(Cambridge series in chemical engineering)
주기사항
Includes bibliographical references and index
표준번호/부호
ISBN 9781107194397 (Hardback)
ISBN 1107194393 (Hardback)
분류기호
듀이십진분류법-> 662.88
주제명
Synthesis gas    Biomass energy
내용유형
text
매체유형
unmediated
수록매체유형
volume

권별정보

권별정보 목록
편/권차 편제 저작자 발행년도 ISBN 청구기호 자료이용하는곳 자료상태
Liang-Shih Fan 2017 9781107194397 (Hardback) W662.88-18-1 보존 서고 신청후이용(보존)
CONTENTS
In Cooperation with Professor Fan's Research Group Members = xiv
Preface = xv
Nomenclature = xix
Abbreviations = xxiii
1 Overview = 1
  1.1 Introduction = 1
  1.2 Energy Scenarios and CO₂Capture Methods = 3
    1.2.1 Energy Scenarios = 3
    1.2.2 CO₂Capture Methods = 4
  1.3 Metal Oxide Reaction Engineering = 5
    1.3.1 Metal Oxide Applications and Properties = 5
    1.3.2 Source and Cost of Metal Oxides = 7
    1.3.3 Ionic Diffusion Mechanism in Metal Oxide = 9
    1.3.4 Ionic Diffusion in Microscale : Nanostructure Formation = 15
    1.3.5 Iron Oxide Reduction Mechanism = 18
    1.3.6 Transition Metal Oxides for Chemical Looping Applications = 19
  1.4 Chemical Looping Classification = 22
  1.5 Chemical Looping Partial Oxidation Historical and Recent Developments = 24
  1.6 Ohio State Chemical Looping Technology Platform = 29
    1.6.1 Chemical Looping Full Oxidation Technology - Category 1 = 31
    1.6.2 Chemical Looping Partial Oxidation Technology - Category 2 = 38
  1.7 Concluding Remarks = 48
  References = 49
2 Metal Oxide Oxygen Carriers = 55
  2.1 Introduction = 55
  2.2 Thermodynamic Principles and Reactivity = 57
    2.2.1 Modified Ellingham Diagram = 57
    2.2.2 Single Metal Oxides = 60
    2.2.3 Complex and Mixed Metal Oxide Based Materials = 66
    2.2.4 Recyclability and Strength = 68
    2.2.5 Effect of Elevated Pressures = 70
  2.3 Morphology and Ionic Diffusion = 83
    2.3.1 Core-Shell Structure Formation = 85
    2.3.2 Morphology Evolution and Nanostructure Formation = 86
    2.3.3 Impact of Ionic Diffusion on Morphology = 97
  2.4 Ionic Diffusion Behavior Modeling = 101
    2.4.1 Density Functional Theory(DFT) Calculations = 102
    2.4.2 Ionic Diffusion Grain Model = 115
  2.5 Phase Diagrams for Oxygen Carriers = 123
    2.5.1 Single Metal Oxygen Carriers = 125
    2.5.2 Binary Metal Oxygen Carriers = 129
  2.6 Oxygen Carrier Attrition = 136
    2.6.1 Types of Attrition Tests = 137
    2.6.2 Attrition Studies on Different Oxygen Carriers = 143
  2.7 Enhancement Techniques for Oxygen Carrier Performance = 155
    2.7.1 Other Physical Property Enhancement Techniques = 156
    2.7.2 Other Chemical Property Enhancement Techniques = 156
  2.8 Concluding Remarks = 160
  References = 161
3 Oxidative Coupling of Methane = 172
  3.1 Introduction = 172
  3.2 Oxidative Coupling of Methane = 174
    3.2.1 Oxidative Coupling of Methane Reactions = 176
    3.2.2 Co-feed Ethylene Formation Mechanism = 178
    3.2.3 Co-feed Carbon Oxide Formation Mechanism = 180
    3.2.4 Role of Oxygen Species = 182
  3.3 Co-feed Metal Oxide Catalysts = 184
  3.4 Redox Catalytic Metal Oxides = 187
  3.5 Substituted and Complex Metal Oxide Catalysts = 191
    3.5.1 Halogen-Based Metal Catalysts = 192
    3.5.2 Solid Electrolyte Metal Catalysts = 192
    3.5.3 Soft Oxidant Based Metal Catalysts = 194
  3.6 Reaction Engineering = 195
    3.6.1 Co-feed Elementary Kinetic Model = 195
    3.6.2 Co-feed Global Kinetic Models = 199
    3.6.3 Co-feed Fixed Bed Reactor Behavior = 204
    3.6.4 Redox Reaction Kinetics = 207
    3.6.5 Co-feed Reactor Design = 209
    3.6.6 Redox Reactor Design = 212
  3.7 Process Engineering = 214
    3.7.1 Process Design Perspective = 214
    3.7.2 Redox Heat Integration = 215
    3.7.3 Product Processing = 219
  3.8 Concluding Remarks = 221
  References = 223
4 Syngas Generation = 236
  4.1 Introduction = 236
  4.2 Conventional Syngas Generation Processes = 237
    4.2.1 Coal Gasification = 237
    4.2.2 Natural Gas Reforming Technologies = 243
    4.2.3 Biomass Gasification = 249
  4.3 Syngas Generation Metal Oxides in Cherrtical Looping = 250
    4.3.1 Selection of Oxygen Carrier = 251
  4.4 Cherrtical Looping Using Fluidized Bed Reducers = 253
    4.4.1 Steam Methane Reforming-Cherrtical Looping Combustion(SMR-CLC) Systems = 254
    4.4.2 CLG/CLR with a Fluidized Bed Reducer = 256
  4.5 Syngas Generation with Moving Bed Reducer = 269
    4.5.1 Iron Oxide Based Oxygen Carriers = 269
    4.5.2 CLR in Fixed Bed Reactors = 271
    4.5.3 Reactor Design of CLG/CLR System With Moving Bed Reducer = 274
    4.5.4 Experimental Studies on Moving Bed Reducers for CLG/CLR Applications = 281
  4.6 Chemical Looping CO₂Neutral and Negative Processes = 287
    4.6.1 CO₂as Feedstock and Conversion in Process Systems = 287
    4.6.2 Reducer Modularization and Product Yield Enhancement = 293
  4.7 Concluding Remarks = 299
  References = 300
5 Catalytic Metal Oxides and Applications = 307
  5.1 Introduction = 307
  5.2 DuPont's Process for Production of Tetrahydrofuran(THF) = 309
    5.2.1 THF Synthesis Processes = 310
    5.2.2 DuPont's Method for THF Production = 310
    5.2.3 Catalytic Metal Oxide VPO = 311
    5.2.4 Lab-Scale Tests = 314
    5.2.5 Bench-Scale Tests = 315
    5.2.6 Pilot Unit Tests = 316
    5.2.7 Commercial-Scale Tests = 318
  5.3 Syngas and Hydrogen Generation with Solar Energy = 320
    5.3.1 Concentrating Solar Thermal Receiver Design = 322
    5.3.2 Solar Thermocherrtical Process = 324
    5.3.3 Solar Thermal Water Splitting Process = 328
  5.4 Selective Partial Oxidation of CH4 to HCHO = 336
    5.4.1 SiO₂Supported V₂O₅and MoO₃as Catalytic Metal Oxides = 336
    5.4.2 Crystal Planes and Active Sites of MoO₃ = 338
    5.4.3 Reaction Mechanism with Isotopic Labeling Experiment = 339
    5.4.4 Effect of MoO₃Loading on Silica Support = 342
  5.5 Selective Partial Oxidation of Propylene = 346
    5.5.1 Redox Mechanism = 347
    5.5.2 Peroxide Mechanism = 350
    5.5.3 Reaction Pathway for Oxidation Over Bismuth Molybdate Catalytic Metal Oxide = 350
    5.5.4 Formation of Acrolein and Carbon Dioxide Over α, β, and y-Bismuth Molybdate = 351
    5.5.5 Re-oxidation of Bismuth Molybdate = 353
  5.6 Selective Oxidation of Alcohols = 354
    5.6.1 Selective Oxidation Mechanism of Propylene Over PeriodⅣMetal Oxides = 355
    5.6.2 Oxidation Mechanism of Propylene Over PeriodⅣMetal Oxides with Isotopic¹⁸O = 356
    5.6.3 Heterogeneous Liquid Phase Selective Oxidation = 357
  5.7 Concluding Remarks = 361
  References = 363
6 Process Simulations and Techno-Economic Analyses = 370
  6.1 Introduction = 370
  6.2 Conventional Partial Oxidation Process = 371
    6.2.1 Coal to Methanol(CTM) Process = 371
    6.2.2 Natural Gas to Liquid Fuel(GTL) Process = 378
    6.2.3 Biomass to Olefins(BTO) Process = 385
  6.3 Chemical Looping Approach to Partial Oxidation = 388
    6.3.1 Coal to Syngas(CTS) Process = 389
    6.3.2 Shale Gas to Syngas(STS) Process = 389
    6.3.3 Biomass to Syngas(BTS) Process = 390
  6.4 Process Modeling and Analysis Parameters = 391
    6.4.1 Aspen Plus® Process Simulation Parameters = 391
    6.4.2 Techno-Economic Analysis Procedure = 393
  6.5 Coal to Methanol(CTM) Process Modeling = 396
    6.5.1 CTS Process Design for Methanol Production = 397
    6.5.2 CTS-CTM Techno-Economic Analysis = 406
  6.6 Natural Gas to Liquid Fuel(GTL) Process Modeling = 410
    6.6.1 STS Process Design for Liquid Fuels Production = 410
    6.6.2 STS-GTL Techno-Economic Analysis = 416
  6.7 Biomass to Olefins(BTO) Process Modeling = 418
    6.7.1 BTS Process Design for Olefins Production = 418
    6.7.2 BTS-BTO Techno-Economic Analysis = 422
  6.8 Other Processes = 423
    6.8.1 Coal and Natural Gas Co-feed in a CTM Configuration = 424
    6.8.2 Fluidized Bed Syngas Generation in a GTL Configuration = 429
    6.8.3 CTS Process in an IGCC Configuration = 431
  6.9 Concluding Remarks = 435
  References = 436
Index = 440

펼쳐보기

알림

닫기
바구니 담기가 완료 되었습니다.
‘바구니’로 이동 하시겠습니까?

퀵메뉴

  • 메일링서비스 신청
  • 협약도서관 안내
  • 사서에게물어보세요
  • 프로그램 다운로드
맨위로
  • 페이지 위로
  • 페이지 아래로